Programming a Classic Arcade Game with
Ruby

First Draft

Andrew Wheeler

September 13, 2015

Contents

Foreword
1 Introduction
2 Game Window

2.1 Game Loop e
2.2 Setting Up The Game Window
2.2.1 Activities
2.3 The Game Loop: Draw
2.3.1 Activities
2.4 The Game Loop: Update
2.4.1 Activities
2.5 Breakout - Create the Game Window
The Paddle
3.1 Drawing the Paddle L
3.1.1 Activities
3.2 Moving the Paddle o
3.2.1 Activities
3.3 Breakout - Create Your Paddle
The Ball
4.1 A Moving Ball
4.1.1 Activities e e e e
4.2 Bounceoff the Walls
4.2.1 Activities e e e e
4.3 Bounce off the Paddle oL
4.3.1 Activities e e
4.4 Breakout - AddtheBall,

The Bricks

5.1 The Wall of Bricks e
5.1.1 Activities e

5.2 Removing Bricks Lo
5.2.1 Activities

5.3 Breakout - Adding the Bricks oo

Final Touches

6.1 Losing the Game
6.1.1 Activities

6.2 Starting the Game and Playing Again,
6.2.1 Activities

ii

0O ~J UL UL i W W INON

o © O

10
10

12
12
12
12
13
13
13
14

15
15
16
17
17
17

Contents

6.3 Breakout - Finishing Your Game
7 Extension

8 Solutions

8.1 Chapter 2 Solutions
8.1.1 Section 2.2.1
8.1.2 Section 2.3.1
8.1.3 Section 2.4.1
8.2 Chapter 3 Solutions L
8.2.1 Section 3.1.1
8.2.2 Section 3.2.1
8.3 Chapter 4 Solutions
8.3.1 Section 4.1.1
8.3.2 Section 4.1.2
8.3.3 Section 4.1.3
8.4 Chapter 5 Solutions
8.4.1 Section 5.1.1
8.4.2 Section 5.2.1
8.5 Chapter 6 Solutions
8.5.1 Section 6.1.1
8.5.2 Section 6.1.2
Appendix
Bibliography

iii

21

22
22
22
22
23
24
24
24
26
26
26
27
28
28
29
29
29
30

31

36

Foreward

This enrichment activity will be providing an introduction to video game programming
using the Ruby language. It is written with grade 9 and 10 students in mind, although
this enrichment activity would be appropriate for any students who have some experience
with the Ruby language. Specifically, they should be comfortable with loops, classes,
and functions. This project is split into multiple chapters, each of which focuses on a
specific component needed in the creation of the classic arcade game Breakout. The first
section of each chapter provides a description of the objectives for the given chapter, which
will generally be a specific component of the Breakout game, along with explanations of
the problem-solving and programming strategies needed to accomplish these objectives.
Activities are then provided that are aimed at reinforcing the concepts discussed and
provide the student with the required knowledge reinforcement to accomplish the given
objectives. The final section of each chapter will then require the student to actually
implement the required game component into their Breakout game and it will also include
teacher notes and a student checklist.

v

1 Introduction

In order to start to build Breakout we will obviously need to have an understanding of its
general game play. Breakout’s game window’s set up is shown below. We have coloured
rectangles in the upper half of the window, which are referred to as bricks and are in
fixed positions. The white rectangle at the bottom of the screen is the paddle and the
small white square is the ball. The paddle is in a fixed vertical position but is able to
move horizontally with user input from the left and right arrow keys, while the ball moves
linearly throughout the window bouncing off the walls, bricks and paddle. One major key
component to the game play is that when the ball bounces off a brick, that brick must
disappear. This game play sequence continues until one of two things occurs: either the
ball gets past the player’s paddle and hits the bottom of the screen or all of the bricks have
been cleared. There are also other game play aspects that are key to the users gaming
experience such as points, lives and increasing difficulty level. However, we are going to
wait until we get our basic game sequence working before we start to worry about adding
these important pieces. To view a simple version of the Breakout game running you can
view the following video.

Figure 1.1: A screenshot of the basic layout of the game components in Breakout.

This would also be a good opportunity to discuss the Gosu library that we will be
using. Gosu is a 2D game development framework for the Ruby programming language. It
provides us with some basic building blocks that are needed to build video games. These
include a window with a main game loop, the ability to add basic 2D graphics and text, and
it gives us basic methods for receiving input from the users keyboard or mouse. Thanks to
Gosu and the building blocks that it provides, we are able to focus our energy on adding
our game components and logic. The specifics of how to implement Gosu will be covered
in each individual section.

https://youtu.be/Nh1ZCRp9FsE

2 Game Window

In terms of the user experience, the game window is the computer window where our game
will actually be played. Gosu provides us with a main window class that is really the
foundation for our entire game. This Gosu Window class manages the creation (drawing)
of all the core components as well as providing the game loop, which allows your game
to be continually updated with new information. However, we want the ability to edit
and add to the Gosu Window class to make it specific to our game and this is where the
power of inheritance comes into play. We will create our own GameWindow class, which
inherits from the Gosu Window class. Our GameWindow class will then have access to the
initialize(), update() and draw() methods found in the Gosu Window class. It is the
combination of these methods that make up the main game loop, which is described in the
figure below and is quite important to understand as it forms the foundation of our game.

2.1 Game Loop

game initialization:
create maps and images

show()

¥

o react fo one-time buton presses
(4 and mouse clicks

loops every perform one tick of activity
d ’
1!522 g; a (i.e. player movement)
redraw the whole scene
from scratch
close()

]

Figure 2.1: Gosu’s game loop.

Once a new instance of the GameWindow is created it first runs the initialize () method,
which creates the window along with any required images. In terms of our game, we will
want to have the paddle, ball and all of the bricks created in our initialize () method.
Now once the show() method is called on our newly created GameWindow instance it will
start the game loop which goes through the following steps at a rate of 60 times per second;

i Check for any input events from the user, such as pressing any buttons or using the
mouse.

ii Update the game components. Did the user click the left arrow key? If so, move the

10

11

12

13

14

15

16

17

18

2 Game Window

paddle left a set number of units. Did the ball hit a wall? If it did, then make it change
direction, otherwise the ball should continue in the same direction.

iii We now need to redraw the whole scene with our updated information. For example,
if the ball hits the brick then we need to make sure that that brick is not drawn and
that the ball is drawn in its new location as it would have bounced off the brick.

2.2 Setting Up The Game Window

We will first look at the initialize() method, which is responsible for constructing
the game window with all the required game components. It will not actually draw the
components onto the screen, as the draw() method is responsible for that, but it simply
takes in all of the information for the components and stores them in this instance of the
game window. If we look at Figure 2.2 below we can see the basic code for getting the
game window set up. Remember that our GameWindow class inherits from Gosu’s Window
class, and therefore the super (line 5) is passing its arguments into Gosu’s Window class
initialize() method which takes the following arguments of width, height, and fullscreen.
The width and height are clearly the dimensions of the window, while fullscreen is a boolean
value that determines whether to create a full-screen window. Additionally we set a caption
which you will see creates a title for the window.

require ’gosu’

include Gosu

class GameWindow < Gosu::Window
def initialize
super (800,600,false)
self.caption = "Setting Up Game Window"

end

def update

end

def draw
end

end

window = {\tt GameWindow}.new

window. show

Figure 2.2: The basic code required to get the game window setup and running.

2.2.1 Activities

1. Type the code in Figure 2.2 into your editor, save the file and run the program. If
you do not see a black square window pop on your screen then carefully look over
your code and ensure you have not mistyped anything. Make sure that you save this
code as we will be appending to it as we move through the project. [Solution]

14

16

2 Game Window

2. Create a game window that is 300 x 500 pixels and not full-screen. Does it matter
which order you input the arguments? Explain. [Solution]

3. Set the parameter for full screen equal to true for the game window in question 2.
What happens? Does the game window get set to the pixel dimensions of your screen?
[Solution]

2.3 The Game Loop: Draw

We are going to look at the draw() method in the GameWindow class, which remember
is part of the game loop. To experiment with the draw() method we need to actually
draw something. This is where Gosu comes in handy again, as it has built in methods
for drawing simple images. In this case we will use the from_text () method from Gosu’s
Image class. This is a class method and takes in the parameters of window, text, font_name,
and font_height. We can then use this method to create an image made up of text that we
can appropriately assign to the variable @text.

def initialize
super (300,300,false)
self.caption = "Setting Up Game Window"
Qtext = Gosu::Image.from_text(self, ’Testing the Draw Method!’,
Gosu.default_font_name, 40)

end

Figure 2.3: The initialize() method in the game window that is constructing an image
from text.

If we add this code to our initialize () method in our GameWindow class, as shown in
Figure 2.3, we are constructing the Qtext image. Now if we run this new code that has
the Qtext image, what do we get? You might expect to see a line of text on the screen
that says “Testing the Draw Method!” but that is not the case. It only gives us the same
black window we had before. We need to remember that the initialize() method only
constructs the Qtext image and does not actually draw it onto the screen. Our instance of
the GameWindow now contains the information required to draw the Qtext image, we just
need to tell it do so and let it know where exactly on the screen we want it to be drawn.
This is where the game loops draw() method comes into play.

def draw
@text.draw(10,10,0)

end

Figure 2.4: The draw() method in the game window, which is used to draw images to the
screen.

Now if we update our draw() method, as shown in Figure 2.4, and run our program
again we will see that the Qtext image has been drawn on the screen. As you may have
guessed, the parameters for the instance method on the Gosu Image object are its (x,y,z)
coordinates. But if Gosu is for building 2D games, why is there a z-value?

4
5
6

2 Game Window

2.3.1 Activities

1. Using our “Testing the Draw Method!” image, experiment with drawing at various
coordinates in our game window. You may have noticed that only the x and y values
control the location of the image and the z value seems to do nothing.

a) We will get to explaining the z-value soon, but for now can you draw a coordinate
axes for the game window? [Solution]

b) Where is the origin (0,0) on the game window? [Solution]

2. We have seen how the from_text () method works. Now you are going to learn how
to include an image as a PNG file.

a) Select a PNG file of your choice and draw it anywhere on our window. [Solution]

b) Now use the draw() methods x_factor and y_factor parameters to scale the
image. Try scaling it to be both larger and smaller. [Solution]

¢) Scale your PNG image to take up about half of the window. Now try to place
the image in the center of the window by passing in coordinates for the window
center, which should be (400, 300) unless you have changed the window size.
Does the image appear to be in the centre of the window? Explain why not.
[Solution]

3. Draw both our “Testing the Draw Method!” image and your PNG onto the window
and use the same coordinates.

a) Which image is on top? Now in your draw() method, flip the order in which
you drew the two images. What happened now? Explain. [Solution]

b) Now change the value of the z-value for the image that is currently on the bottom
to a number greater than the z-value for the image on the top. What happens?
Can you explain how the z-value works? [Solution]

2.4 The Game Loop: Update

We now know how to draw components onto the screen, but we do not know how to actually
make them interact with each other or with the user. This is where the update () method
comes into play. Before we get ahead of ourselves, we will just show that the game loop
is in fact running. Update your initialize() and update() methods as shown in Figure
2.5 and before running the program, try to figure out what will happen (hint: be sure to
watch the terminal window and not just the game window).

Now that we know that the game loop is in fact working we can start to use it to draw
and interact with images in our game window. We will create a program (Figure 2.6) that
will output a text image that shows the current coordinates of the image and using the
keypad, allows the user to move the image, with the coordinates of the image updating in
real-time.

class GameWindow < Gosu::Window
def initialize
super (800,600,false)

http://www.libgosu.org/rdoc/Gosu/Image.html#initialize-instance_method
http://www.libgosu.org/rdoc/Gosu/Image.html#draw-instance_method

10
11
12
13
14
15

1

2

4

10

11

12

14

15

16

17

18

2 Game Window

self.caption = "Testing Game Loop"
Q@counter = 0

end

def update
Qcounter += 1
puts Qcounter
end

end

Figure 2.5: This program that shows that the update loop is working and how quickly it
runs.

If we break down the program in Figure 2.6 we can see many similarities to earlier
examples. We are again initializing a game window, but this time we are setting @x and
@y instance variables that will set the initial values for the image to be drawn. Now once
the show() method is called the game loop begins and our update() method checks to
see if any of the arrow keys have been pressed by using Gosu’s button_down? () method.
Pressing any of the buttons results in the expected change in our (x,y) coordinates for
the image. After the update () method is complete the draw() method is run, which uses
Gosu’s from_text() method to create our @message image, which will show the x and
y coordinates (remember these coordinates will have been updated if any arrow buttons
were pressed). Once the image is constructed it is then drawn on the screen calling the
draw() instance method on @Qmessage. That is one cycle of the game loop, which is then
run again and again at a rate of 60x per second. This continues until the window is closed
or the program is ended. This a good frame rate for our purposes, but it is possible to
change update interval. Along with the width, height, and fullscreen parameters in the
initialize() method for the game window, we can also pass in the update_interval
parameter. By default this is set to 16.666666 milliseconds, which represents the interval
between update calls.

require ’gosu’

include Gosu
class GameWindow < Gosu::Window

def initialize
super (800,600,false)
self.caption = "Game Loop"
0x = 10
@y = 10

end

def update
@x -= 1 if button_down?(Gosu::KbLeft)
@x += 1 if button_down?(Gosu::KbRight)
@y -= 1 if button_down?(Gosu: :KbUp)
@y += 1 if button_down?(Gosu: :KbDown)

end

https://www.libgosu.org/rdoc/Gosu/Window.html#initialize-instance_method

20

21

22

23

24

25

26

27

def

2 Game Window

draw

O@message = Gosu::Image.from_text(

self, "x: #{@x}, y: #{Q@y}", Gosu.default_font_name, 20)

@message.draw(@x, Qy, 0)

end

end

window = GameWindow.new

window. show

Figure 2.6: A demonstration of how to combine the update () method and draw() method

24.1
1.

3.

to move an image around the screen through user input.

Activities

Experiment with changing the increment used when the arrow keys are pressed. How
does this impact the movement of the image? [Solution]

. In earlier examples we had constructed the images in the initialize () method for

the GameWindow. Try moving our construction of the @message image (line 25) into
the initialize () method. What happens? Explain why the @message image needs
to be constructed in the draw() method in order for the program to function as we
planned. [Solution]

a) We are currently writing the real-time coordinates for the image to the screen.
Add the code required to also write to the screen the number of times that the
draw() method has been called. The image text will now look something like
this “x: #Qx, y: #Qy, draws: #Qdraws”. [Solution]

b) What happens to the number of draws when you are not moving the image
with the arrow keys? Why might this not be optimal? (Hint - needs_redraw?)
[Solution]

¢) Implement the needs_redraw() method to prevent the @message image from
being drawn when it is not necessary. [Solution]

http://www.libgosu.org/rdoc/Gosu/Window.html#needs_redraw%3F-instance_method

2.5

2 Game Window

Breakout - Create the Game Window

Brief Summary for Teacher

Students should now have the foundations and understanding to build the game win-
dow for their Breakout game. They should be able to create windows of varying sizes and
understand the grid system used in the window, specifically that the origin is in the top
left corner. Possibly the most important aspect for the students to fully understand is the
game loop, as it forms the critical component in the games creation. Students should be
able to verbally explain several iterations of the game loop, as it is implemented in Activity
2.4.1 Question 3.

Student Checklist

v

Create a game window of appropriate dimension. Something around 800 x 600 pixels
should work well.

The window should not be full-screen.
Include a caption of your choice.
Make sure you require 'gosu’ and include Gosu.

Remember to actually invoke a new instance of the game window (GameWindow.new)
and to call the show() method.

Ensure that you have a good understanding of the game loop. Specifically, understand
how the update () and draw() methods work together to create the basic foundation
for our game.

Note: Please refer to the final Breakout game code in the appendix for the solution.
Students would be provided with the incremental solution but it was not included here as
it would result in excessive repeating of code.

10

11

12

13

3 The Paddle

We have the window set up where the game will be played and now we need to start
creating our game logic and components. Our first task will be to create our paddle which
is fixed vertically but moves horizontally across the lower portion of the screen based on
the user’s input.

3.1 Drawing the Paddle

In the previous chapter we saw how to create an image from text and how to load a PNG
to use as our image. We are also able to use Gosu’s Image class to draw images, specifically
quadrilaterals, by passing it a collection of coordinates. Also remember that classes can
be viewed as a type of factory that has the blueprints for creating specific objects in our
game. We've created a GameWindow class that is responsible for constructing our game
window and now we need to create a class that is responsible for our user’s paddle. Our
initialize () method for the Paddle class is going to need to know which game window
to draw itself in, so we need to pass this as a parameter in our initialize() method.
We'll also need a draw() method that invokes our draw_quad() method. At first glance,
the draw_quad () method appears complicated with its many parameters, but it is actually
quite simple. You are passing in the x and y coordinates for each of the 4 vertices, along
with a single z-value.

class Paddle
def initialize(window)
Qwindow = window

end

def draw
@window.draw_quad(
50, 50, Color::WHITE,
200, 50, Color::WHITE,
50, 100, Color::WHITE,
200, 100, Color::WHITE)
end

end

Figure 3.1: The draw_quad() method will be very useful as we start to build our game
components.

3.1.1 Activities

1. On its own this Paddle class will not draw anything to your game window, as they
are not connected in anyway to each other. Update your game window class to draw

3 The Paddle

the quadrilateral in Figure 3.1 onto the screen. [Solution)]

2. Experiment with drawing the following types of quadrilaterals to the screen; a par-
allelogram, trapezoid and a kite. [Solution]

3. Draw a square and a rectangle. For each one calculate the central coordinate. This
will be useful when we try to move our quadrilaterals around the screen. [Solution]

4. Draw a star with six vertices (Hint - draw_triangle). [Solution]

3.2 Moving the Paddle

We have the skills to draw the paddle to the screen but now we need to get it to move
on user input. Something very similar was done when we learned about the game loop
and the update() method, where the text image was moved around the screen using
the arrow keys. Except in that case, we were moving an image that had a single set of
coordinates and now we are working with a quadrilateral’s four vertices. When we create
a new paddle object using the Paddle class we are now going to have to also pass to it
the (x,y) coordinates along with the window object. However, what point will this (x,y)
coordinate represent? It could represent one of the four vertices and we could add and
subtract from those coordinates to find the other 3 vertices. The problem with this is that
it might make things slightly more confusing when we need to start doing calculations to
see if the paddle has come into contact with other game components. For this project, 1
would suggest setting the x and y coordinates for the paddle to represent its center.

Vertice 1 Vertice 4

{x ¥

Vertice 2 Vertice 3

Figure 3.2: This figure shows the center of the paddle, which will be used to update its
location, as well as its 4 vertices.

3.2.1 Activities

1. a) Write a program that allows the user to move a rectangle around the game
window but instead of using the arrow keys use the W, A, S, and D keys.
[Solution]

b) Now add a second rectangle with a different colour to your program from ques-
tion 1 and make this rectangle move around the screen using the arrow keys.
[Solution]

10

https://www.libgosu.org/rdoc/Gosu/Window.html#draw_triangle-instance_method

3.3

3 The Paddle

¢) What happens when the two rectangles overlap? Use the z-values to see if you
can control which rectangle is shown on the top. [Solution]

Breakout - Create Your Paddle

Brief Summary for Teacher

If the students had a good grasp on the creation of the GameWindow class from Chap-
ter 2 than they should experience success with creating their moving paddle. Although the
addition of a new Paddle class does add some extra complexity that some students may
initially struggle with. Struggling students likely find Activity 3.2.1 Question 1 difficult,
as it requires the creation of two movable rectangles. Continuing to review the game loop
and how the update() and draw() methods work together with initialize() method
will help them to work through their difficulties.

Student Checklist

v

Create a paddle of appropriate size. I would suggest around 50px in length and 10px
in height but this is of course your personal choice.

The paddle should be fixed vertically but move horizontally on key input from the
user.

Set the fixed vertical position to something that is close to the bottom of the screen
(maybe 30-50px).

Ensure that the paddle moves at an appropriate speed on user input. Too fast and
it can be hard to control and jumpy. Too slow and it can be frustrating and difficult
to get to the ball in time.

The paddle should not be able to go off screen. In earlier examples we let this
happen as there was no check being done to see if the paddle was at the end of the
screen. I would suggest creating instance methods named something along the lines
of move_left and move_right, which will help you to do a check and only subtract or
add to the x position if appropriate.

Note: Please refer to the final Breakout game code in the appendix for the solution.
Students would be provided with the incremental solution but it was not included here as
it would result in excessive repeating of code.

11

4 The Ball

4.1 A Moving Ball

We want to start by just adding the ball to the game window and making it bounce around
the window, completely ignoring the paddle. Once we have that working we can add the
logic to make the ball also bounce off the paddle. Unlike the paddle, the ball needs to
move on its own, independent of the user. The paddle waited for the user to direct its
movements, while the ball should be updating its position in every iteration of the game
loop. When the ball is constructed in its initialize () method we need to not only pass
in its initial coordinates, but we also need to give it a horizontal and vertical velocity. For
example, if the horizontal velocity, vx, is set to 5 and the vertical velocity, vy, is 3 then the
ball will move 5 units to the right and 3 units up every time through the game loop.

4.1.1 Activities

1. Using your program from Chapter 3 with the game window and paddle classes, add
a ball that begins in the bottom right of the window and moves towards the upper
left corner. We will actually be using a square ball for our game, which does sound
a little strange. I'd suggest making your ball a 5x5 pixel square. [Solution]

2. Once you have accomplished the above task, experiment with moving the ball in
different directions and at different speeds. [Solution]

4.2 Bounce off the Walls

As you have likely noticed, our ball is currently moving off the screen. We need to find a
way for the ball to check to see if it has reached one of the windows edges and bounce off
in the opposite direction if it has. Of course we want the ball to follow the physical laws
where the angle of incidence is equal to the angle of reflection (Figure 4.1). This may seem
tricky but it is actually quite simple. Look at the figure below and think about how the
horizontal and vertical velocity components have changed after the bounce, compared to
if there was no wall. You can assume that the velocity of the ball does not change after
the collision with the wall.

Figure 4.1: This figure shows the ball’s path during a bounce off the wall.

12

4 The Ball

4.2.1 Activities

1. We now need to stop the ball from moving through the edges of the game window.
The ball should bounce around the game window but still pass directly through our
paddle if they come into contact.

a) Start by creating a method that checks to see if the ball has collided with either
of the vertical walls. Remember that the x-value of the left wall will always
be 0, while the right wall will have an x-value equal to the width of our game
window. Therefore if the x-value of the ball is less than 0 or greater than the

width of the game window then we want to change the horizontal direction of
the ball.

b) Now create a method that checks for the ball colliding with the top and bottom
walls. You should be able to implement a strategy similar to the one applied in

(a).
¢) Update the methods created in (a) and (b) to ensure that only the edge of

the ball appears to contact the edge of the wall. Hint - remember that the
coordinates for our ball represents its centre and not its edge.

[Solution]

4.3 Bounce off the Paddle

Our ball is moving around our game window beautifully now, except it is still ignoring
our paddle. This becomes a little trickier than bouncing off the walls, due to the fact that
our paddle is moving and not stationary. We need a way to determine if a collision has
occurred between the ball and the paddle. As you can imagine, collision detection is a very
common aspect of game development and there are various strategies for implementing it.
Luckily for us, we are dealing with simple rectangular shapes so we will have a relatively
easy time implementing the bounding box detection method. Clearly, for every possible
positioning case for the ball and paddle, they must either be intersecting or not intersecting
(we will consider touching to be intersecting). We want to know if our ball and paddle
are intersecting; however, in this case it is actually simpler for us to create a method that
checks if they are not intersecting. We know that if this method returns false that our ball
and paddle must have collided. So now, how do we go about checking to see if our two
objects are not intersecting? Well, what must be true if the x-value of the right edge or our
ball is less than the x-value of the left edge of our paddle? If this does not make sense, try
drawing it out to help with you visualization. As you will likely see, if the above statement
is true then our ball must not be intersecting with the paddle because our ball is on the
left side of the paddle. You can use a similar check to see if the ball is to the right, above
or below the paddle and if any of these cases is true then they must not be intersecting. It
is also worth pointing out here that we will be considering the collision to be frictionless,
although there is possible game extensions that incorporate a friction component.

4.3.1 Activities

1. Use the bounding box method to detect collisions between our ball and the paddle. 1
would suggest implementing the bounding box method within an instance method for

13

4 The Ball

the ball, which takes in the paddle as a parameter and changes the vertical direction
of the ball if a collision has occurred.[Solution]

2. We have ignored the fact that the ball could hit the side of the paddle. If the ball
did hit the side of the paddle this would not help the player, as it would result in the
ball changing its horizontal direction but not its vertical. But we want our game to
look as realistic as possible and currently if the ball contacts the side of the paddle it
will pass through. Update your method that checks for a collision between the ball
and paddle to account for side collisions. As a hint, we will now need to run a check
after a collision is detected to determine if it has contacted the side of the paddle.
[Solution]

4.4 Breakout - Add the Ball

Brief Summary for Teacher

Students should now have a ball that bounces appropriately off the walls of the window
and the paddle. Students may initially struggle with determining how to make their ball
bounce with the angle of incidence equalling the angle of reflection; however, if they draw
the ball bouncing with its respective x and y velocity vectors they should be able to reach
the correct solution. Adequate testing should be done to ensure that the ball bounces
correctly no matter where it hits the paddle, as depending on the values used there might
be some areas with glitches.

Student Checklist
v It is suggested that the ball is a 10x10 pixel square.

v The ball should move freely throughout the whole window and bounce off the walls
and paddle.

v Make sure that the speed of the ball is appropriate for the game. Something around
5px per frame should be a good start, but you are encouraged to experiment and test
different ball speeds.

Note: Please refer to the final Breakout game code in the appendix for the solution.
Students would be provided with the incremental solution but it was not included here as
it would result in excessive repeating of code.

14

5 The Bricks

5.1 The Wall of Bricks

At this point we are experts at creating rectangles on the screen at any location that we
want, so you may think that creating the bricks will be easy. The challenge is not creating
a brick but creating all of the bricks in the correction arrangement. The Breakout game
received its name from the idea of breaking out of the wall of bricks that you are faced
with when the game starts. Once you have accomplished this you are able to get the ball
bouncing between the top of the window and the remaining bricks, racking up multiple
brick hits with minimal effort. This means that it is important that the bricks make up a
wall with a space at the top. Refer to Figure 1.1 to get a reminder of the general idea for
the bricks configuration.

You may be thinking that you will be able to create the bricks in the same fashion as
you did the paddle and the ball. The issue with this is that you will have to create at
least 40 bricks, assuming you have 4 rows of 10 bricks, and each of these will have unique
coordinates. That would make for many lines of repetitive code, which we really do not
want to do. We will discuss some options for using the Ruby language to do the majority
of this tedious work, but first we need to figure out the dimensions and arrangement of
our bricks. You might think that you could just arbitrarily choose a width and length for
your bricks but the issue with this is that you might be left with a gap between your bricks
and the wall. This would not be good because the ball would then have a path to sneak
its way up to the top of the window before the user has actually broken through. The key
to determine the correct brick size is in knowing the width of the window, the number of
bricks and the size of the spaces you want between each brick. In Figure 5.1 we can see an
example where the width of the window is 200px and the spacing between the six bricks
is 2px. As there will be a total of 7 spaces, each measuring 2px, we are left with 186px for
the bricks and therefore each brick would need to be 31px.

Window width = 200

2px space
between
bricks

Figure 5.1: It is important that the row of bricks contains no spaces large enough for the
ball to pass through.

15

5 The Bricks

Now that we know how many columns of bricks we will need in our wall we can start
to focus on constructing them. Our goal is to create an array that contains all of the
constructed brick objects with their correct coordinates. With this array, we can do a
quick and easy .each iteration, moving through the array and drawing each of the bricks
onto the screen. As an example, we will walk through creating an array that contains the
six brick objects that would be needed to create the row of bricks seen in Figure 5.1. We
can see that the distance between the midpoint of each brick is going to be the same, so
we should be able to find a pattern for each of the brick’s midpoints.

Bricks Midpoint x-value
1 (24+31)-17.5 15.5
2 2(2431)-17.5 48.5
3 3(2+31)-17.5 81.5
4 4(2+31)-17.5 114.5
5 5(2+31)-17.5 147.5
6 6(2431)-17.5 180.5

Looking at the table we can start to see a pattern that we can apply to find the x-value
for the midpoint of our bricks, no matter how many bricks we have. It is also important
to note that the y-value is not important in this example, as we are only building one row
the y-value will be the same for all these bricks. Now using this pattern and the .each
iteration function in Ruby, we are able to create an array that contains all of the brick
objects in this row (Figure 5.2). As mentioned earlier, once we have the array containing
the brick objects it is only a matter of moving through the array and calling the draw()
method on each object in the array to have the bricks drawn to the screen.

@bricks = []
(1..6).each do |column]
@bricks << Brick.new(self, 33*col-17.5, 40)

end

Figure 5.2: Demonstrating the use of the .each method to create a row of bricks with
uniform spacing.

5.1.1 Activities

1. a) Assume that we want the space between our bricks to always be 2px. With this
in mind, create a formula for the width of each brick given that the window
width is w and the number of bricks is b.[Solution]

b) Using the example code in Figure 5.2 and your formula from part (a), create
a row of bricks, with spacing of 2px between each, in your Breakout program
from Chapter 4. Remember to leave a sufficient space at the top of the game
window.[Solution]

2. The next step is to draw multiple rows of bricks to the screen to build up your wall of
bricks. The decision as to how many rows to have is up to you, but I would suggest
at least 4 or 5. Hint - you might need to use a .each iterator function within a .each
iterator function. [Solution]

16

5 The Bricks

5.2 Removing Bricks

Adding our wall of bricks has really helped our game to actually start to take shape and
resemble the original Breakout, although our ball is still ignoring the bricks and passing
right through them. We now need to make the ball not only bounce off the bricks, but
also cause the brick that was hit to disappear. The task of making the ball bounce off the
bricks should not be anything too difficult, as it is very much what we did to have the ball
bounce off the paddle. Once we have a method that checks to see if a brick is touching the
ball, we simply need to run through the array of bricks and apply this method to each of
them. If we find a brick that is touching the ball, we want to remove that brick from the
array. This way, when the array is drawn again in the draw() method it will not draw this
specific brick.

5.2.1 Activities

1. Now that we have our wall of bricks you need to add the code to remove any bricks
that the ball has collided with.

a) First lets focus on getting the ball to bounce off our bricks. Remember that
we want the ball to bounce off not only the bottoms of the bricks but also the
sides and tops of the bricks. As a hint, look back at your code for the collision
between the paddle and the ball where we used the bounding box detection
method.

b) With our method for checking for brick collisions we can now start to remove
bricks. We need to iterate through our array of bricks and check each one for
any collisions. If a collision is detected we can then remove that brick from the
array, thereby preventing it from being drawn. [Solution]

5.3 Breakout - Adding the Bricks

Brief Summary for Teacher

The challenge with creating the wall of bricks will be to not only calculate the appro-
priate number and dimensions of the bricks, but to also construct the correct algorithm
that will create the array that contains all the brick objects. At this point in the creation
of the game, it may make sense for students to start to change the dimensions of their
window, paddle and bricks to improve gameplay.

Student Checklist

v The bricks are uniformly spaced and there are no gaps large enough for the ball to
pass through.

v There is a gap beween the top row of bricks and the top of the window.

v The bricks are sized appropriately. I’d suggest playing the game a little to get a sense
of whether you should make your bricks larger or smaller.

v The bricks are removed when the ball collides with them.

Note: Please refer to the final Breakout game code in the appendix for the solution.

17

6 Final Touches

6.1 Losing the Game

You may have noticed the one big glaring issue with our current game, there is no way to
lose. The ball just continues to bounce around all the window edges and the user never
loses. We need to fix this and make the game end when the ball gets past the paddle. To
help with this and clean our code up a little, I would suggest pulling out some of the code
from our update () method into its own separate method. The update() method can be
viewed as the code required to run the game and currently it is always being run no matter
what, which results in the game always running so long as the program is running. For
this reason, it makes sense to pull the code from the update () method and put it into its
own method that we can call run_game ().

def update
run_game

end

def run_game
@paddle.move_left if button_down?(KbLeft)
@paddle.move_right if button_down?(KbRight)
@ball.update
@ball.change_horizontal_direction if (@ball.x >= 795 || @ball.x <= 5)
@ball.change_vertical_direction if (@ball.y >= 595 || @ball.y <= 5)
@ball.change_vertical_direction if @ball.hit?(@paddle)
@bricks.each do |brick]|
if @ball.hit?(brick)
@bricks.delete(brick)
@ball.change_vertical_direction
end
end

end

Figure 6.1: We can pull all our logic that is used to run the game into its own method,
thereby simplifying our update () method.

We could also start creating some separate methods for all of the different tasks being
performed by the run_game method, but we will leave that for later. Now our update ()
method is much easier to understand; whenever the update () method is called the game
is run. We need to add some logic to this so that the game is only run if the ball is above
the paddle. It would be useful to make a variable such as game running that is set to
a boolean. Our update() method could then check to see if game_running is set to true
before running the run_game method.

18

6 Final Touches

6.1.1 Activities

1. a) First, add the boolean variable to our GameWindow class and set it to initialize
to true. Also, add a check to our update() method that only runs the game
if @game_running is true. This should ensure that the game immediately starts
running when the program starts.

b) Create a game_over?() method that takes in the ball as a parameter and sets
the @game_running variable to false if the ball has made it past the paddle. Test
your game to ensure that your logic works accordingly.

[Solution]

6.2 Starting the Game and Playing Again

Another issue with our game is that the game starts immediately after the program starts
running. Also, once the player has lost, there is no way to play again without closing and
restarting the program. Both of these problems can be solved using the game running
variable that we just created to check when the game is lost. It should be possible for us to
leverage this variable and set it to false if the user has not requested that the game start.
When the user takes the required action we can set the game_running variable to true and
invoke the run_game method from our GameWindow update.

Restarting the game after the player loses is quite similar, except for one problem. If
we allow the user to simply start playing again by clicking the ‘play again’ key then the
ball will just continue moving from the point below the paddle. Therefore, we also need to
reset the balls position as well as set the game_running variable back to true.

6.2.1 Activities

1. a) Make the game start when the user has pressed a specific key, such as the
spacebar. Remember that we will now want our @game_running variable to
initialize to false and we will change its value on the user input.

b) We now want to be able to restart the game after we have lost. Create a
play_again? method that resets the @game running variable to true if it is
false and the space bar has been pressed.

¢) You will have likely noticed that our game can now restart but our ball just con-
tinues moving from its current location. We need to create a method that resets
the balls position and this needs to be invoked after setting the @game_running
variable to true in our play_again? method.

d) As an extension you could also add a message that appears on the screen that
prompts the user to press the specified key to start or replay the game.
[Solution]

19

http://www.libgosu.org/rdoc/Gosu/Font.html#draw-instance_method

6 Final Touches

6.3 Breakout - Finishing Your Game

Brief Summary for Teacher

Students will have the basic components and game play functioning now and it is only
a matter of adding some final touches. For a simple solution, I suggest implementing a
method that checks if the user has requested the game to start and/or replay as well as a
method for checking if the ball has made it past the paddle. These methods can be used as
filters to only allow the run_game () method to be called when appropriate. However, this
is the point in the project where students may start to experience some scalability issues.
If students wish to continue to add extensions and new game play components to their
game then they will realize that they may need to rework some of their earlier game logic
in order to proceed. This is an excellent opportunity to discuss the importance of writing
clean and scalable code.

Student Checklist
v The game loop should stop when the ball passes below the paddle.
v When the program starts, the game loop should wait for user input before starting.

v When the user loses they should be able to restart by pressing a specific key and the
ball should reset its location.

Note: Please refer to the final Breakout game code in the appendix for the solution.
Students would be provided with the incremental solution but it was not included here as
it would result in excessive repeating of code.

20

7 Extension

We have now created our nice little Breakout game. Although, I am sure that you have
noticed that there are certain aspects missing that would improve the game play. Here are
some suggested extensions that will improve your game even further. These are of course
just suggestions and you are encouraged to use your imagination to improve the game in
any way you see fit.

e It would be great to be able to keep score. Points could be awarded for each brick
that is cleared, possibly awarding more points for bricks that are in the higher rows.
It would also make sense to colour the bricks different depending on the number of
points they are worth.

e Currently you can keep on continuing the game after losing and the bricks are not
reset. It would make sense if the player gets a specific number of lives and once they
have lost that many times, the bricks (and score) reset.

e We currently hard code all our important values (game window width and length,
ball size, paddle size, brick size) into the program directly. It would be fantastic if
we set these to global variables. This would allow you to change these values in one
spot in the program without having to go through and look for every line of code
where it is called. This would be very useful for testing out different dimensions for
your window and game components.

e It would be pretty neat if the game got more challenging the longer the user was
playing for. Maybe you could make the ball’s speed get faster and faster as the game
progresses or the wall of bricks slowly move down towards the paddle (or both!).

e Another fun idea would be to add a power-up component to the game. There could
be a couple of randomly selected bricks that when cleared released a power-up and if
the paddle touches the power-up before it reaches the bottom of the screen the user
gains some sort of ability. Some possible ideas for power-ups include;

— increasing or decreasing the size of the ball and/or paddle
— gaining an extra life

— making the paddle ‘sticky’ so that it catches the ball and the user can release
the ball on key input

— adding multiple balls

21

8 Solutions

8.1 Chapter 2 Solutions
8.1.1 Section 2.2.1

1. If the program is not working read the error carefully and see if you can problem
solve your way to the solution. Ask a peer or teacher if you continue to experience
difficulties.

2. The order does matter, as the the width is the first parameter and the height is the
second parameter.

1 require ’gosu’

2 include Gosu

4 class GameWindow < Gosu::Window

5 def initialize

6 super (300,500, false)
7 end

8 end

10 window = GameWindow.new

11 window.show

3. The game window is not set to the dimensions of the screen, but instead it creates a
game window that is a maximized fullscreen window.

8.1.2 Section 2.3.1

1. a) The coordinate axes;

A 4

b) The origin is in the top left corner of the game window.

22

2.

8 Solutions

a) Drawing a png of choice anywhere one screen:

1 class GameWindow < Gosu::Window

2 def initialize

3 super (800,600,false)

4 self.caption = "Setting Up Game Window"
5 @png = Gosu::Image.new(self, "brick.png", true)
6 end

7

8 def draw

9 @png.draw(400,300,0)

10 end

11 end

b) Scaling the png to be larger and smaller:
@png.draw(400,300,0, 4, 4) #scales to be 4z larger
@png.draw(400,300,0, 0.5, 0.5) #scales to be half the size

c¢) The item does not appear in the centre because the top left corner of the image
is placed at the coordinate passed to the method.

a) The image that is drawn first appears on the bottom while the image drawn
second appears on top.

b) The image with the greater z-value appears on top of the image with the smaller
z-value.

8.1.3 Section 2.4.1

1.

3.

The image is moved farther with each button click as the increment is increased. It
has an appearance of moving faster, unless the increment is much higher as it then
makes the image appear to jump between different locations on the window.

If the image is constructed in the initialize() method then the image is only
constructed once, when the game window is invoked. At that time, it is passed the
initial x and y values and these will not be updated as the image moves because the
image is not being constructed in the draw() method.

a) Part ¢ includes the code for writing the number of draws to the screen.

b) The number of draws continues to increase even when the image is not moving.
The computer is having to do processing work when it isn’t necessary. It is
minor in this case because what it is drawing is a minimal object, but the same
principal could be applied to more complicated images or processing tasks.

¢) Implementing the needs_redraw? method:
1 class GameWindow < Gosu::Window

2 def initialize

3 super (800,600,false)

4 self.caption = "Game Loop"
5 6x = 10

6 @y = 10

7 @draw = 0O

8 @buttons_down = 0

9 end

23

8 Solutions

10 def update

11 0x -= 1 if button_down?(Gosu::KbLeft)
12 @x += 1 if button_down?(Gosu: :KbRight)
13 @y -= 1 if button_down?(Gosu: :KbUp)

14 @y += 1 if button_down?(Gosu: :KbDown)
15 end

16 def button_down(id) #adding to both Gosu’s button_down and button_up methods

17 Q@buttons_down += 1

18 end

19 def button_up(id)

20 @buttons_down -= 1

21 end

22 def needs_redraw? #if @raw ts O then there have been not updates

23 @draw == 0 || @buttons_down > O #if Q@buttons_down > O then a key was pressed
24 end

25 def draw

26 @draw += 1 #increment Q@draws each time the draw method is invoked

27 @message = Gosu::Image.from_text(self, "x: #{@x}, y: #{Q@y}, draw: #{@draw}",
28 Gosu.default_font_name, 20)

29 @message.draw(@x, Qy, 0)

30 end

31 end

8.2 Chapter 3 Solutions
8.2.1 Section 3.1.1

1. To draw the quad to the screen we need to update our initialize () method:
@paddle = Paddle.new(self) #self indicates the game window ttself

Add the draw() method that we discussed earlier to our GameWindow class:
def draw

Opaddle.draw

end

2. Parallelogram
Qwindow.draw_quad(200,325,@colour,375,375,@colour,375, 125, @colour,200,75,@colour)
Trapezoid
Qwindow.draw_quad(175,165,0colour,275,165,@colour, 125,265, @colour,390,265,0@colour)
Kite
Qwindow.draw_quad(60,130,0colour, 120,50, @colour,180,130,@colour,120,200,0@colour)

3. The center of the square and rectangle can be found by calculating the midpoint for
the length and width.

4. Star
Qwindow.draw_triangle(300,100,@colour,500,400,0@colour,100,400,@colour)
Qwindow.draw_triangle(100,200,@colour,500,200,@colour,300,500,0colour)

8.2.2 Section 3.2.1
1. a) Refer to solution 1b.

24

8 Solutions

b) Controlling two separate paddles simultaneously:

1
2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

require ’gosu’

include Gosu

class GameWindow < Gosu::Window
def initialize
super (800,600,false)
self.caption = "Breakout"
@paddlel = Paddle.new(self, 200, 200, Color::WHITE)
@paddle2 = Paddle.new(self, 600, 200, Color::RED)

end

def update
@paddlel.x -= 1 if button_down?(Gosu: :KbLeft)
@paddlel.x += 1 if button_down?(Gosu: :KbRight)
@paddlel.y -= 1 if button_down?(Gosu: :KbUp)
@paddlel.y += 1 if button_down?(Gosu: :KbDown)
@paddle2.x -= 1 if button_down?(Gosu: :KbA)
@paddle2.x += 1 if button_down?(Gosu: :KbD)
@paddle2.y -= 1 if button_down?(Gosu: :KbW)
@paddle2.y += 1 if button_down?(Gosu: :KbS)

end

def draw

Opaddlel.draw
@paddle2.draw
end

end

class Paddle
attr_accessor :x, :y
def initialize(window, x, y, colour)
Owindow = window
0x = x
ey =y
Qcolour = colour

end

def draw
Qwindow.draw_quad(
@x-75,Qy-25,Qcolour,@x-75,Q@y+25,Qcolour,
@x+75,0y+25,0@colour,@x+75,0y-25,@colour)
end

end

window = GameWindow.new

window.show

25

8 Solutions

8.3 Chapter 4 Solutions
8.3.1 Section 4.1.1

1. The code for the Ball and GameWindow classes are given below, while the Paddle class

would remain unchanged.
class GameWindow < Gosu::Window

[un

2 def initialize

3 super (800, 600, false)

4 self.caption = ’Breakout’

5 @paddle = Paddle.new(self, 400, 580)

6 @ball = Ball.new(self, 750, 550, -3, -2)
7 end

8 def update

9 @paddle.move_left if button_down?(KbLeft)
10 @paddle.move_right if button_down?(KbRight)
11 @ball.update

12 end

13 def draw

14 Opaddle.draw

15 @ball.draw

16 end

17 end

18

19 class Ball

20 attr_accessor :x, :y

21 def initialize(window, x, y, vx, vy)

22 Owindow = window

23 0x = x

24 Qy =y

25 Qvx = vx

26 Qvy = vy

27 end

28

29 def update

30 0x += Qvx

31 Qy += Qvy

32 end

33

34 def draw

35 Qwindow.draw_quad(

36 @x-5,Q@y-5,Color: :WHITE,@x+5,@y-5,Color: : WHITE,
37 @x+5,Q@y+5,Color: : WHITE,@x-5,@y+5, Color::WHITE)
38 end

39 end

8.3.2 Section 4.1.2

1. We will need to update our program from 4.1.1. The Ball class needs the following
two methods:

26

8 Solutions

def change_vertical_direction
Qvy *= -1
end

def change_horizontal_direction

Qvx *= -1
end
a) @ball.change_horizontal_direction if (@ball.x >= 800 || @ball.x <= 0)
b) @ball.change_vertical_direction if (@ball.y >= 600 || @ball.x <= 0)

@ball.change_horizontal_direction if (@ball.x >= 795 || @ball.x <= 5)
@ball.change_vertical_direction if (@ball.y >= 595 || @ball.y <= 5)

8.3.3 Section 4.1.3

1. Adding the following method to the Ball class will give it the ability to check to see
if it has collided with the paddle:
def paddle_hit?(paddle)
if (@x+5 >= (paddle.x-25) && (@x-5 <= paddle.x+25) &&
(@y + 5 >= paddle.y - 5) && @y - 5 <= paddle.y + 5)
self.change_vertical_direction
end
end
We must also invoke the paddle hit? method in our game loop update method.
@ball.hit?(@paddle)

2. To check for ball collisions on the side of the paddle we must add some checks to

determine the balls location after a collision has occurred.
def paddle_hit?(paddle)

if (@x+5 >= (paddle.x-25) && (@x-5 <= paddle.x+25) &&
(@y + 5 >= paddle.y - 5) && @y - 5 <= paddle.y + 5)
if (@x < (paddle.x + 25) && (@x > (paddle.x - 25)))
self.change_vertical_direction
elsif (@x <= paddle.x - 25)
if self.vx < 0O
self.change_vertical_direction
else
self.change_horizontal _direction
end
elsif (@x <= paddle.x + 25)
if self.vx > 0O
self.change_vertical_direction
else
self.change_horizontal _direction
end
end
end

end

27

8 Solutions

8.4 Chapter 5 Solutions

8.4.1 Section 5.1.1

1.

a) The formula for the width of the bricks is:

BW = w—be—Q
where w is the window width and b is the number of bricks.

b) You will need to add a Brick class:

class Brick

attr_reader :x, :y

def initialize(window, x, y)

O@window = window

0x = x
Cy =y
end
def draw

@window.draw_quad(
0x-25,Q@y-5, Color::RED,
0x+25,0@y-5, Color: :RED,
0x+25,Q@y+5, Color: :RED,
©0x-25,Qy+5, Color::RED,
)
end
end
You also need to construct an array of brick objects in the GameWindow’s
initialize() method. The values used below are based on a window with
a width of 800px:
@bricks = []
(1..15) .each do |column|
@bricks << Brick.new(self, 53.125%column-25, 50)
end
Lastly you will need to make sure that you iterate through the array of brick
objects and draw them to the screen in the draw() method of your window:
@bricks.each do |brick]
brick.draw

end

2. To get the multiple rows of bricks you will need to update the each iterator function

in the GameWindow initialize() method. We need to add a second .each method
to iterate through each column of bricks and make multiple rows:

@bricks = []
(1..15) .each do |column|
(1..6).each do |rowl|
@bricks << Brick.new(self, 53.125*column - 25, 13*row + 50)
end

end

28

8 Solutions

8.4.2 Section 5.2.1

1. a) Refer to b.

b) Instead of creating a new method to check to see if the ball has hit the paddle,
I have reused the method paddle hit?() that we created to check to see if
the ball hit the paddle and renamed it obj_hit?() and passed it the following
parameters; the object, the objects width, and the objects height. Remember
you will need to update the paddle_hit?() method to obj hit?().

def obj_hit?(obj, objwidth, objheight)
if (@x+5 >= (obj.x-(objwidth/2)) && (@x-5 <= obj.x+(objwidth/2)) &&
(@y + 5 >= obj.y - (objheight/2)) && @y - 5 <= obj.y + (objheight/2))
if ((6x < (obj.x + (objwidth/2))) &&
(ex > (obj.x - (objwidth/2))))
self.change_vertical_direction
elsif (@x <= obj.x - (objwidth/2))
if self.vx < 0O
self.change_vertical_direction
else
self.change_horizontal_direction
end
elsif (@x >= obj.x + (objwidth/2))
if self.vx > 0O
self.change_vertical_direction
else
self.change_horizontal_direction
end
end
end

end

My update() method in the GameWindow now uses the hit? method to check
to see if the ball has hit any of the bricks in the array, and if it has, it deletes
that brick and changes the vertical direction of the ball.
@bricks.each do |brick]|
brickwidth = self.brick_width(800,15)
if @ball.obj_hit?(brick, brickwidth, 20)
@bricks.delete(brick)
end

end

8.5 Chapter 6 Solutions

8.5.1 Section 6.1.1

1. a) Refer to b.
b) Add the boolean variable to the game window:

Qgame_running = true
Now we need to create a game over? method and invoke it in our update()
method:

29

8 Solutions

def game_over?(ball)
QOgame_running = false if ball.y > 590

end

def update
game_over? (@ball)
if @game_running
run_game
end

end

8.5.2 Section 6.1.2

1. a) Refer to c.
b) Refer to c.

¢) We need to change our @game_running variable to false, so that when the pro-
gram starts the game is not running. We can then create a method for checking
if the game has started, if the user has requested to play again, and a method
to reset the balls location. These are then used within the update() method
to check to see if the run_game method needs to be invoked. The ball’s vertical
velocity has also been reset to be negative so that the user has time to move the
paddle from its losing location.
def game_start?
@game_running = true if button_down?(KbSpace)
end
def play_again?
if (Q@game_running == false && button_down? (KbSpace))
Ogame_running = true
reset_position
end
end
def reset_position
@ball.x = 400
@ball.y = 300
Oball.vy *= -1
end
def update
game_start?
game_over? (@ball)
play_again?
if Q@game_running
run_game
end

end

d) Refer to the final program included in the appendix.

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

Appendix

The code snippets in this project were created using the minted package for Latex.

Final Breakout Game

A video of the code for the Breakout game running is included here.
require ’gosu’

include Gosu

class GameWindow < Gosu::Window
def initialize
super (800, 600, false)
self.caption = ’Breakout’
@font = Gosu::Font.new(self, Gosu::default_font_name, 20)
@paddle = Paddle.new(self, 400, 580)
@ball = Ball.new(self, 300, 400, -2.5, -4)
@bricks = []
(1..15) .each do |column|
(1..6).each do |row]
@bricks << Brick.new(
self, (2+(brick_width(800,15)))*column - (brick_width(800,15)/2), 23*row + 50)
end
end
Ogame_running = false
@first_game = true

end

def game_over?(ball)
Q@game_running = false if ball.y > 590

end

def play_again?
if (Q@game_running == false && button_down?(KbSpace))
Q@game_running = true
reset_position
end

end

31

https://code.google.com/p/minted/
https://youtu.be/Nh1ZCRp9FsE

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

8 Solutions

def game_start?
if button_down? (KbSpace)
@game_running = true
@first_game = false
end

end

def reset_position
@ball.x = 400
@ball.y = 300
@ball.vy *= -1

end

def brick_width(w, b)
return (w - 2*xb - 2)/b

end

def update
game_start?
game_over?(@ball)
play_again?
if @game_running
run_game
end

end

def run_game
@paddle.move_left if button_down?(KbLeft)
@paddle.move_right if button_down?(KbRight)
@ball.update

@ball.change_horizontal_direction if (@ball.x >= 795 || @ball.x <= 5)
@ball.change_vertical_direction if (@ball.y >= 595 || @ball.y <= 5)

@ball.obj_hit?(@paddle,50,10)
@bricks.each do |brick]|

if @ball.obj_hit?(brick, self.brick_width(800,15), 20)

@bricks.delete (brick)
end
end

end

32

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

8 Solutions

def draw
@paddle.draw
@ball.draw
@bricks.each do |brick]|
brick.draw
end

if @first_game == true

@font.draw("Welcome to Breakout! Press Spacebar to start game.",

175, 350, 3.0, 1.0, 1.0, Oxffffffff)

end

if (@game_running == false && Q@first_game

@font.draw("Game Over! Press Spacebar to restart.",

225, 350, 3.0, 1.0, 1.0, Oxffffffff)
end
end

end

class Ball

attr_accessor :x, :y, :Vy, VX

def initialize(window, x, y, vx, vy)

Qwindow = window

0x = x

Gy =y

Qvx = vx

Qvy = vy
end

def obj_hit?(obj, objwidth, objheight)

if (@x+5 >= (obj.x-(objwidth/2)) && (@x-5 <= obj.x+(objwidth/2)) &&
(@y + 5 >= obj.y - (objheight/2)) &« Q@y - 5 <= obj.y + (objheight/2))
if ((@x < (obj.x + (objwidth/2))) && (@x > (obj.x - (objwidth/2))))

self.change_vertical_direction
elsif (@x <= obj.x - (objwidth/2))
if self.vx < 0O
self.change_vertical_direction

else

self.change_horizontal_direction

end
elsif (@x >= obj.x + (objwidth/2))
if self.vx > 0
self.change_vertical _direction

else

self.change_horizontal_direction

end
end
end

end

33

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

163

164

165

166

167

169

def update
0x += Qvx
Qy += Qvy
end

def change_vertical_direction
Qvy *= -1

end

def change_horizontal_direction
Qux *= -1

end

def draw
Qwindow.draw_quad(
0x-5,0Qy-5, Color::WHITE,
0x+5,Qy-5, Color::WHITE,
0x+5,Qy+5, Color::WHITE,
@x-5,Qy+5, Color::WHITE,
)

end

end

class Paddle

attr_accessor :x, :y

def initialize(window, x, y)

Qwindow = window

0x = x
Cy =y
end

def move_left

@x -= 5
@x = 25 if @x < 25
end

def move_right
@x += 5
@x = 775 if @x > 775

end

def draw
Qwindow.draw_quad(
0x-25,Qy-5, Color::WHITE,
0x+25,0y-5, Color::WHITE,
@x+25,0Qy+5, Color::WHITE,
0x-25,Qy+5, Color::WHITE,
)

end

end

8 Solutions

34

171

172

173

174

175

176

177

178

179

180

181

182

183

184

186

187

188

190

class Brick

attr_reader :x,

8 Solutions

8y

def initialize(window, x, y)

Q@window = window

0x = x
Cy =y
end
def draw

@window.draw_quad(

©@x-(@window
@x+(@window
@x+(@window
@x- (@window
)

end

end

.brick_width(800,15)/2),0y-10,
.brick_width(800,15)/2),0y-10,
.brick_width(800,15)/2),0y+10,
.brick_width(800,15)/2),0y+10,

window = GameWindow.new

window.show

35

Color:
Color:
Color:

Color:

:RED,
:RED,
:RED,
:RED,

Bibliography

1. Collingbourne, H., The Little Book Of Ruby, Dark Neon Ltd., New York, 2008.
In this resource, basic foundational concepts of the Ruby programming language
are covered. It will act as a good resource for supplementing the students prior
knowledge.

2. Gillette, J., why’s (poignant) Guide to Ruby, Creative Commons Distribution Li-
cense, 2007.
This source provides a good breadth of information on the Ruby programming lan-
guage, from the basic concepts of strings and arrays to more complicated topics like
as classes and inheritance.

3. Radocchia, S. (2013, June 18). Look Ma, I Built a Game! [Web log post]. Retrieved
from http://blog.flatironschool.com/look-ma-i-built-a-game/
This source provides an introduction to building games with Ruby and the Gosu
library. It also links to the source code for a version of the Breakout game.

4. Varaneckas T., Developing Games with Ruby, Leanpub, Vancouver, 2014.
This source is a detailed and thorough look at building games with the Ruby language.

5. Gosu’s Documentation (rdoc). http://www.libgosu.org/rdoc/.
This source is the complete documentation for the Gosu library.

6. Gosu’s Ruby Tutorial. https://github.com/jlnr/gosu/wiki/Ruby-Tutorial.
This source gives a detailed tutorial on various aspects of using Gosu with the Ruby
language, including setting up the game window, drawing images and moving objects.

7. Ruby Monk. http://rubymonk.com/learning/books/1-ruby-primer.
This source is a collection of free interactive tutorials focused on Ruby. It will act as
a good resource for students to review and reinforce the concepts learned.

8. CodeAcademy - Ruby Track. http://www.codecademy.com/tracks/ruby.
This source focuses mainly on syntax and basic concepts of Ruby.

36

	Foreword
	Introduction
	Game Window
	Game Loop
	Setting Up The Game Window
	Activities

	The Game Loop: Draw
	Activities

	The Game Loop: Update
	Activities

	Breakout - Create the Game Window

	The Paddle
	Drawing the Paddle
	Activities

	Moving the Paddle
	Activities

	Breakout - Create Your Paddle

	The Ball
	A Moving Ball
	Activities

	Bounce off the Walls
	Activities

	Bounce off the Paddle
	Activities

	Breakout - Add the Ball

	The Bricks
	The Wall of Bricks
	Activities

	Removing Bricks
	Activities

	Breakout - Adding the Bricks

	Final Touches
	Losing the Game
	Activities

	Starting the Game and Playing Again
	Activities

	Breakout - Finishing Your Game

	Extension
	Solutions
	Chapter 2 Solutions
	Section 2.2.1
	Section 2.3.1
	Section 2.4.1

	Chapter 3 Solutions
	Section 3.1.1
	Section 3.2.1

	Chapter 4 Solutions
	Section 4.1.1
	Section 4.1.2
	Section 4.1.3

	Chapter 5 Solutions
	Section 5.1.1
	Section 5.2.1

	Chapter 6 Solutions
	Section 6.1.1
	Section 6.1.2

	Appendix
	Bibliography

